Probabilistic modeling of eruptive activity at Etna volcano using InSAR surface displacements and ATSR thermal radiance
نویسندگان
چکیده
[1] Satellite monitoring offers a powerful means to regularly characterize the mechanical and thermal states of active volcanoes. Satellite-measured surface inflation and radiant heat flux reflect the pressurization and discharge, respectively, of a magmatic system, suggesting that studying these parameters together may help in better understanding future eruptive activity. We incorporate InSAR surface displacement data and ATSR thermal radiance data into a probabilistic model for activity at Etna volcano in 1996–2000, when surface deformation and thermal radiance appeared to be related in a periodic fashion. The probabilistic approach addresses both the magnitude and timing of eruptive events, based upon a simple physical model of eruptions as renewal processes. We anticipate that this approach could serve as a framework for probabilistic assessment in eruption scenarios with persistent activity and multiple monitoring datastreams. Citation: Patrick, M. R., L. N. Frazer, and B. A. Brooks (2006), Probabilistic modeling of eruptive activity at Etna volcano using InSAR surface displacements and ATSR thermal radiance, Geophys. Res. Lett., 33, L18312, doi:10.1029/2006GL026983.
منابع مشابه
Shifts in the eruptive styles at Stromboli in 2010–2014 revealed by ground-based InSAR data
Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) is an efficient technique for capturing short, subtle episodes of conduit pressurization in open vent volcanoes like Stromboli (Italy), because it can detect very shallow magma storage, which is difficult to identify using other methods. This technique allows the user to choose the optimal radar location for measuring the most sign...
متن کاملERS InSAR Observations of Mt. Etna volcano: Magma inflation and radial spreading
We present a synthesis of ERS-1 and ERS-2 differential SAR interferometry (InSAR) observations of Mt. Etna volcano over roughly the past ten years from 10022002. Through this time period Mount Etna underwent a cycle of eruptive activity starting with a large flank eruption that ended in March 1993, followed by two years quiescence, with resumed summit activity starting in the summer of 1995, cu...
متن کاملA statistical analysis of eruptive activity on Mount Etna, Sicily
S U M M A R Y A rigorous analysis of the timing and location of flank eruptions of Mount Etna on Sicily is important for the creation of hazard maps of the densely populated area surrounding the volcano. In this paper, we analyse the temporal, volumetric and spatial data on eruptive activity on Etna. Our analyses are based on the two most recent and robust historical data catalogues of flank er...
متن کاملStudies of Volcanoes of Alaska by Satellite Radar Interferometry
Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes....
متن کاملRetrieving Three Dimensional Displacements of InSAR Through Regularized Least Squares Variance Component Estimation
Measuring the 3D displacement fields provide essential information regarding the Earth crust interaction and the mantle rheology. The interferometric synthetic aperture radar (InSAR) has an appropriate capability in revealing the displacements of the Earth’s crust. Although, it measures the real 3D displacements in the line of sight (LOS) direction. The 3D displacement vectors can be retrieved ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006